

MODEL PAPER, 2023

Sı	ubject:	Mathematics	Grade – IX		M. Marks:	Time: 3 Hours							
_	SECTION "A"												
(MULTIPLE CHOICE QUESTIONS)													
Q1.	1. Choose the correct answer for each from the given options. Each question												
	carrie	es one mark.		(15)									
	(i)	The additive in											
		(a) _{−√5}		(b)	$1/\sqrt{5}$								
		(c) $\sqrt{-5}$	((d)	-5								
	(ii) If log x = 4, then the value of x is:												
		(a) 510		(b)	100								
		(c) 1000		(d)	10000								
	(iii)	The degree of	⁴ – 10 is:										
		(a) 4		(b)	5								
		(c) 6		(d)	10								
	(iv)	The factor of a											
		(a) (a + 4) (a -	- 6)	(b)	(a - 4) (a + 6)								
		(c) (a + 3) (a	- 8)	(d)	(a + 8)(a - 3)								
	(v)	The solution s	set of $\left \frac{5y}{3}\right = 5$ is:										
		(a) {3}		(b)	{-5, 5}								
		(c) {3, -3}	((d)	{-3}								
	(vi)	The point (1, -	2) lies in:										
		(a) 1 st quadra	ant	(b)	2 nd quadrant								
		(c) 3 rd quadra	ant	(d)	4 th quadrant								
	(vii)	A triangle having all 3 sides congruent is called:											
		(a) Scalene	((b)	Right angle								
		(c) Equilatera	al	(d)	lsosceles								
	(viii)	$(5+\sqrt{5})(5-\sqrt{5})$	$\overline{5}$) is equal to:										

		(a)	10	(b)	15						
		(c)	25	(d)	30						
	(ix)	$a^2 + b^2 + c^2 + 2ab + 2ca$ is equal to:									
		(a)	(a + b - c) ²	(b)	$(a + b + c)^2$						
		(c)	$(a - b + c)^2$	(d)	$(a + b + c)^2$						
	(x) The characteristics of log 54.58 is:										
		(a)	0	(b)	1						
		(c)	2	(d)	4						
	(xi)	Logxyz =									
		(a)	Logx logy logz	(b)	Log x + log y + log z						
		(c)	Log (xy) ^z	(d)	Logx – logy - logz						
	(xii)	(5i)	(5i) (-2 <i>i</i>) =								
		(a)	-10	(b)	10						
		(C)	10 <i>i</i>	(d)	-10 <i>i</i>						
	(xiii) A (3, 0) and B = (0, 3) are any two points in the plane then $ \overline{AB} $ =										
		(a)	6	(b)	$6\sqrt{2}$						
		(C)	$3\sqrt{2}$	(d)	$2\sqrt{3}$						
	(xiv) The point of intersection of all the three internal trisectors of the anç										
		called:									
		(a)	Centroid	(b)	In centre						
		(c)	Ortho centre	(d)	Circum centre						
	(xv) How many maximum roots of a quadratic equation are:										
		(a)	1	(b)	2						
		(c)	3	(d)	4						
	SECTION "B"										
Note:	ote: Answer any six questions from this section. (30)										
Q2.	If $z_1 =$	2-5 <i>i</i>	i and $z_2 = 2 + 3i$ verify that $\overline{z_1}$.	$\overline{z_2} =$	$\overline{Z_1}$. $\overline{Z_2}$.						
Q3.	Find the value of $a^3 + b^3$, when $a + b = 4$ and $ab = 3$. OR $\frac{\sqrt[3]{(125)^2 x 8}}{\sqrt{(2 x 32)^2}}$										
Q4.	Find the value by using logarithms: $\frac{790.6 \times 30.32}{25.753}$.										
Q5.	Find the factors by using factor theorem $x3 + 5x^2 - 4x - 20$.										

- Q6. Find the square root of the expression $25x^4 + 40x^3 + 26x^2 + 8x + 1$ by division method.
- Q7. Find the solution set of the following equation and also verify the answer.

$$\sqrt{4x+5} = \sqrt{3x-7}$$

- Q8. Solve the equation by using quadratic formula $x^2 2x = 15.3$
- Q9. If two angles of a triangle are congruent then the sides opposite to them are also congruent. Prove it.
- Q10. If two opposite sides of a quadrilateral are congruent and parallel, it is a parallelogram, prove it.
- Q11. Construct $\triangle PQR$ such that $m\overline{PQ} = m\overline{QR} = 4.6cm$ and $m \angle = 35^{\circ}$.

SECTION "C"

- Note: Attempt any three questions from this section.
- Q12. Factorize the following (any four)
 - (i) $36x^4 + 12x^2 + 1$ (ii) $4t^4 + 625$ (iii) $x^6 + 1$
 - (iv) $16x^2 25y^2$ (v) $x^8 + x^4 + 1$ (vi) $x^2 + 13xy 30y^2$
- Q13. Find the solution set of the following simultaneous equations by graphical method.

- Q14. In the correspondence of two right angled triangle, the hypotenuse and one side of one are congruent to the hypotenuse and the corresponding side of the other, then the triangle are congruent, prove it.
- Q15. The line segment joining the mid points of two sides of a triangle is parallel to the third side and it is equal to one half of its length, prove it.
- Q16. Using distance formula, find the perimeter of the triangle formed by the point A (0, 0), B (4, 0) and C (2, $2\sqrt{3}$).