Page 1 of 2		Ziaud EXAM	DIN UNIVERSITY INATION BOARD	Total Time 3 hours Total Marks: 75
Class: X Time Allowed: 20 minutes Q1:		MODEL PAPER EXAMINATION 2025 SUBJECT: GENERAL MATHEMATICS (SECTION "A")		Marks: 15
Note: Atter	npt ALL question	s from Section 'A'. Eac	h question carries ONE mark.	
1. 2.	In cubic polyno A. 1 HCF of 24 and 2	mial, the highest pow B. 2 30 is .	er of the variable is C. 3	 D. 4
	A. 6	B. 12	C. 18	D. 24
3.	If the determina	ant of the matrix is zer	o, the matrix is called a/an	matrix.
	A. Identity	B. Null	C. Singular	D. Non-singular
4.	Coordinate poin x-axis and y-axi	nts is kn is intersect each other	nown as the origin of the standar at 90° .	d coordinate system where the
	A. (1,1)	B. (-1, -1)	C. (0,0)	D. (0,1)
5.	$\frac{16}{20} =0$ A. 16	%. B. 20	C. 40	D. 80
6.	In the expressio	In $\sqrt{24}$, the value of in	ndex is	
	A. 2	B. 3	C. 24	D. 48
7.	The absolute va	lue of -5 is		
	A5	B . 0	C. 5	D. 10
8. 9.	$\sqrt[3]{64} =$ A. 4 In a right-angled	B. 8 B. 8 d triangle, the opposit	C. 16 e side of the right angle is called	D. 32 1
	A. Perpendicul	ar B. Base	C. Hypotenuse	D. Diagonal
10	The order of the	e matrix with 3 colum	ns and 2 rows is	
	A. 2 x 3	B. 3 x 2	C. 2 x 2	D. 3 x 3
11.	Point (3, - 4) lie	es in		
	A. Quadrant I	B. Quadrant II	C. Quadrant III	D. Quadrant IV
12	$\begin{bmatrix} 6 & -3 \\ 9 & 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 5 \\ -6 \end{bmatrix} = $		
	A. $\begin{bmatrix} 4 & 8 \\ -9 & 9 \end{bmatrix}$	B. $\begin{bmatrix} -4 & 8\\ 9 & -9 \end{bmatrix}$	C. $\begin{bmatrix} 4 & 8 \\ -9 & -9 \end{bmatrix}$	D. $\begin{bmatrix} 4 & -8 \\ 9 & 9 \end{bmatrix}$
13	$5^{0} \times y^{2} = $	·		
	A. 0	$B. 5 \ge y^2$	C. $x y^2$	D. $x^5 y^{10}$
14	If $a > b$ and $c > c$	\cdot 0, then the relationsh	ip between ac and bc is	·
	A. $ac \leq bc$	B. $ac = bc$	C. $ac < bc$	D. $ac > bc$
15	Degree of the p	polynomial $2x^3 + 3x^2$ -	+4x + 1 is	
	A. 1	B. 2	C. 3	D. 4

END OF SECTION A

Page 2 of 2

EXAMINATION BOARD

Total Time 3 hours Total Marks: 75

Class: X

MODEL PAPER EXAMINATION 2025

Time: 2 hours 40 minutesSUBJECT: GENERAL MATHEMATICS (SECTION "B" AND SECTION "C")Total Marks 60SECTION "B" (SHORT ANSWER QUESTIONS)30 Marks

Note: Attempt any <u>SIX</u> questions from Section 'B'. Each question carries <u>FIVE</u> marks.

Q.2 Prove that: $(a + b)^2 + (a - b)^2 = 2(a^2 + b^2)$

Q.3 Find continued product by using the formula: $(x + y) (x - y) (x^2 + y^2) (x^4 - y^4)$

- Q.4 Find the value of $x^3 \frac{1}{x^3}$ when $x \frac{1}{x} = 4$
- Q.5 Factorize: (i) $81a^2 25b^2$ (ii) $a^3 125$
- Q.6 Construct a rectangle with sides 10 cm and 6 cm. Also, write steps of construction.
- Q.7 Two angles are supplementary and the greater angle exceeds the smaller angle by 30° . Calculate the measurement of each angle.
- Q.8 Find the value of $a^2 + b^2 + c^2$ when a + b + c = 12 and ab + bc + ca = 8

Q.9 Multiply: $(3\sqrt{5} - 5\sqrt{2}) \cdot (4\sqrt{5} + 3\sqrt{2})$.

Q.10 Find the distance between the pairs of points: (2, 1) and (-4, 3).

Q.11 If $x = 3 + \sqrt{8}$ then find the value of $x + \frac{1}{x}$

SECTION "C" (DETAILED ANSWER QUESTIONS)

30 Marks

Note: Attempt any <u>THREE</u> questions from Section 'C'. Each question carries <u>TEN</u> marks.

Q.12 Solve the following simultaneous equations by the Matrix Inversion Method:

2x - 5y = 1

3x - 7y = 2

Q.13 Derive the quadratic formula by using completing the square method.

Q.14 Find the H.C.F and L.C.M of the following algebraic expression by Division Method:

$$(x^3 + x^2 + x + 1) (x^3 - x^2 + x - 1)$$

Q.15 Solve: $\frac{1}{a^2+1} - \frac{a^4}{a^2+1} + \frac{a^6}{a^2-1} - \frac{1}{a^2-1}$

Q.16 The base and height of a triangle are (x + 3) cm and (2x - 5) cm respectively. If the area of a triangle is 20 cm², find x.

END OF PAPER