ZIAUDDINUNIVERSITY

Mathematics

XI

Student Resource

Contents

MATRICES: 2
Bigger Matrices 2
LOGARITH: 3
How to Do it 3
Example: 0.0055 is written 5.5×10^{-3} 3
Example: 3.2 is written 3.2×10^{0} 3
Check! 3
Why Use It? 4
Example: Suns, Moons and Planets 4
Play With It! 5
Engineering Notation 5
Examples: 5
Example: $\mathbf{0 . 0 0 0 1 2}$ is written 120×10^{-6} 5

MATRICES:

Bigger Matrices
The inverse of a 2×2 is easy ... compared to larger matrices (such as a $3 \times 3,4 \times 4$, etc).
For those larger matrices there are three main methods to work out the inverse:

- Inverse of a Matrix using Elementary Row Operations (Gauss-Jordan)
- Inverse of a Matrix using Minors, Cofactors and Adjugate
- Use a computer (such as the Matrix Calculator)

Conclusion

- The inverse of A is A^{-1} only when $\mathrm{A} \times \mathrm{A}^{-1}=\mathrm{A}^{-1} \times \mathrm{A}=\mathbf{I}$
- To find the inverse of a 2×2 matrix: swap the positions of a and d, put negatives in front of b and c, and divide everything by the determinant (ad-bc).
- Sometimes there is no inverse at all

Topic 1.6: Solution of simultaneous Liner Equation
SLOs:

- Solve a system of two linear equations, using Matrix inversion method and Cramer's rule

Matrices - solving two simultaneous equations sigma-matrices8-2009-1 One of the most important applications of matrices is to the solution of linear simultaneous equations. On this leaflet we explain how this can be done. Writing simultaneous equations in matrix form Consider the simultaneous equations $x+2 y=43 x-5 y=1$ Provided you understand how matrices are multiplied together you will realise that these can be written in matrix form as 123-5!x y!=4 1 ! Writing $A=123-5!, X=x y!$, and $B=41$!we have $A X=B$ This is the matrix form of the simultaneous equations. Here the only unknown is the matrix X, since A and B are already known. A is called the matrix of coefficients. Solving the simultaneous equations Given $\mathrm{AX}=\mathrm{B}$ we can multiply both sides by the inverse of A, provided this exists, to give $A-1 A X=A-1 B$ But $\mathrm{A}-1 \mathrm{~A}=\mathrm{I}$, the identity matrix. Furthermore, $\mathrm{IX}=\mathrm{X}$, because multiplying any matrix by an identity matrix of the appropriate size leaves the matrix unaltered. $\mathrm{So} \mathrm{X}=\mathrm{A}-1 \mathrm{~B}$ if $\mathrm{AX}=\mathrm{B}$, then $\mathrm{X}=\mathrm{A}-1 \mathrm{~B}$ This result gives us a method for solving simultaneous equations. All we need do is write them in matrix form, calculate the inverse of the matrix of coefficients, and finally perform a matrix multiplication. www.mathcentre.ac.uk 1 c mathcentre 2009 Example. Solve the simultaneous equations $x+2 y=43 x-5 y=1$ Solution. We have already seen these equations in matrix form: $123-5!\mathrm{x} y!=41!$. We need to calculate the inverse of $\mathrm{A}=123-5!. \mathrm{A}-1=$ $1(1)(-5)-(2)(3)-5-2-31!=-111-5-2-31!$ Then X is given by $\mathrm{X}=\mathrm{A}-1 \mathrm{~B}=-111-5$ $-2-31!41!=-111-22-11!=21!$ Hence $x=2, y=1$ is the solution of the simultaneous equations. Example. Solve the simultaneous equations $2 x+4 y=2-3 x+y=11$ Solution. In matrix form: $24-31!\mathrm{x} y!=211!$. We need to calculate the inverse of $\mathrm{A}=24-31!$. $\mathrm{A}-1=$
$1(2)(1)-(4)(-3) 1-432!=1141-432!$ Then X is given by $\mathrm{X}=\mathrm{A}-1 \mathrm{~B}=1141-432!2$ $11!=114-4228!=-32!$ Hence $x=-3, y=2$ is the solution of the simultaneous equations. You should check the solution by substituting $x=-3$ and $y=2$ into both given equations, and verifying in each case that the left-hand side is equal to the right-hand side.

LOGARITH:

How to Do it

To figure out the power of 10 , think 'how many places do I move the decimal point?'"

When the number is 10 or greater, the decimal point has to move to the left, and the power of 10 is positive.

When the number is smaller than 1 , the decimal point has to move to the right, so the power of 10 is negative.

Example: 0.0055 is written 5.5×10^{-3}

Because $0.0055=5.5 \times 0.001=5.5 \times 10^{-3}$

Example: 3.2 is written 3.2×10^{0}

We didn't have to move the decimal point at all, so the power is $\mathbf{1 0}^{\mathbf{0}}$
But it is now in Scientific Notation

Check!

After putting the number in Scientific Notation, just check that:

- The "digits" part is between 1 and 10 (it can be 1 , but never 10)
- The "power" part shows exactly how many places to move the decimal point

Why Use It?
Because it makes it easier when dealing with very big or very small numbers, which are common in Scientific and Engineering work.

Example: it is easier to write (and read) 1.3×10^{-9} than 0.0000000013
It can also make calculations easier, as in this example:
Example: a tiny space inside a computer chip has been measured to be 0.00000256 m wide, 0.00000014 m long and $\mathbf{0 . 0 0 0 2 7 5} \mathrm{m}$ high.

What is its volume?
Let's first convert the three lengths into scientific notation:

- width: $0.00000256 \mathrm{~m}=2.56 \times 10^{-6}$
- length: $0.00000014 \mathrm{~m}=1.4 \times 10^{-7}$
- height: $0.000275 \mathrm{~m}=2.75 \times 10^{-4}$

Then multiply the digits together (ignoring the $\times 10 \mathrm{~s}$):
$2.56 \times 1.4 \times 2.75=9.856$

Last, multiply the $\times 10 \mathrm{~s}$:
$10^{-6} \times 10^{-7} \times 10^{-4}=10^{-17}$ (easier than it looks, just add -6, -4 and -7 together)
The result is $\mathbf{9 . 8 5 6} \times 10^{-17} \mathrm{~m}^{\mathbf{3}}$
It is used a lot in Science:

Example: Suns, Moons and Planets

The Sun has a Mass of $1.988 \times 10^{30} \mathrm{~kg}$.
Easier than writing $1,988,000,000,000,000,000,000,000,000,000 \mathrm{~kg}$
(and that number gives a false sense of many digits of accuracy.)

It can also save space! Here is what happens when you double on each square of a chess board:

Values are rounded off, so $53,6870,912$ is shown as just 5×10^{8}
That last value, shown as 9×10^{18} is actually $9,223,372,036,854,775,808$

Engineering Notation

Engineering Notation is like Scientific Notation, except that we only use powers of ten that are multiples of 3 (such as $10^{3}, 10^{-3}, 10^{12}$ etc).

Examples:

- 2,700 is written $\mathbf{2 . 7} \times \mathbf{1 0}^{\mathbf{3}}$
- 27,000 is written $\mathbf{2 7} \times \mathbf{1 0}^{\mathbf{3}}$
- 270,000 is written $\mathbf{2 7 0} \times \mathbf{1 0}^{\mathbf{3}}$
- $2,700,000$ is written $\mathbf{2 . 7} \times \mathbf{1 0}^{\mathbf{6}}$

Example: 0.00012 is written 120×10^{-6}
Notice that the "digits" part can now be between 1 and 1,000 (it can be 1 , but never 1,000).

The advantage is that we can replace the $\times 10$ s with Metric Numbers. So we can use standard words (such as thousand or million), prefixes (such as kilo, mega) or the symbol (k, M, etc)

Example: 19,300 meters is written $\mathbf{1 9 . 3} \times \mathbf{1 0}^{\mathbf{3}} \mathbf{~ m}$, or $\mathbf{1 9 . 3} \mathbf{~ k m}$
Example: 0.00012 seconds is written $\mathbf{1 2 0} \times \mathbf{1 0}^{\mathbf{- 6}} \mathbf{s}$, or $\mathbf{1 2 0}$ microseconds

