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Topic-1
EXAMPLE 1.6

Combining Functions Using Mathematical Operations

Given the functions f(x)=2x—3f(x)=2x—3 and g(x)=x2—1,g(x)=x2—1, find each of the following
functions and state its domain.

(F+9) () (f+g)(x)
(F9) () (E2)(x)
(F9)()(f-9)(x)
(fa)(x)(f)(x)

CHECKPOINT 1.4

oo oe

For f(x)=x2+3f(x)=x2+3 and g(x)=2x—5,g(x)=2x-5, find (f/g)(x)(f/g)(x) and state its domain.
Function Composition

When we compose functions, we take a function of a function. For example, suppose the
temperature TT on a given day is described as a function of time tt (measured in hours after
midnight) as in Table 1.1. Suppose the cost C,C, to heat or cool a building for 1 hour, can be
described as a function of the temperature T.T. Combining these two functions, we can describe
the cost of heating or cooling a building as a function of time by evaluating C(T(t)).C(T(t)). We
have defined a new function, denoted CoT,CeT, which is defined such

that (CoT)(t)=C(T(t))(CoT)(t)=C(T(t)) for all tt in the domain of T.T. This new function is called
a composite function. We note that since cost is a function of temperature and temperature is a
function of time, it makes sense to define this new function (CoT)(t).(CoT)(t). It does not make
sense to consider (ToC)(t),(ToC)(t), because temperature is not a function of cost.

DEFINITION

Consider the function ff with domain AA and range B,B, and the function gg with
domain DD and range E.E. If BB is a subset of D,D, then the composite
function (gef)(x)(gef)(x) is the function with domain AA such that

(9o (X)=9(f(x)).(g°)(x)=a(f(x)).

11
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A composite function gefgef can be viewed in two steps. First, the function ff maps each

input xx in the domain of ff to its output f(x)f(x) in the range of f.f. Second, since the range

of ff is a subset of the domain of g,g, the output f(x)f(x) is an element in the domain of g,g, and
therefore it is mapped to an output g(f(x))g(f(x)) in the range of g.g. In Figure 1.12, we see a
visual image of a composite function.

Domain Domain of g g Range of g
of f R =
M) f 2 -3
e

\\ 3\

Domain
of
gof gof

Range of f Range of

gof

Figure 1.12 For the composite function gef,gof, we

have (gof)(1)=4,(g°)(2)=5.(g°f)(1)=4,(9°f)(2)=5, and (g-f)(3)=4.(g°F)(3)=4.
EXAMPLE 1.7

Compositions of Functions Defined by Formulas
Consider the functions f(x)=x2+1f(x)=x2+1 and g(x)=1/x.g(x)=1/x.

Find (geof)(x)(gef)(x) and state its domain and range.

Evaluate (9°f)(4),(9°f)(=1/2).(9°f)(4),(goN)(~1/2).
Find (fog)(x)(fog)(x) and state its domain and range.

Evaluate (fog)(4),(feg)(—1/2).(fog)(4),(feg)(—1/2).

oo o

In Example 1.7, we can see that (fog)(X)#(gof)(x).(feg)(x)#(gof)(x). This tells us, in general
terms, that the order in which we compose functions matters.

CHECKPOINT 1.5

Let f(x)=2—5x.f(x)=2—5x. Let g(x)=x—\.g(x)=x. Find (fog)(x).(fog)(x).


https://openstax.org/books/calculus-volume-1/pages/1-1-review-of-functions#CNX_Calc_Figure_01_01_011
https://openstax.org/books/calculus-volume-1/pages/1-1-review-of-functions#fs-id1170572481349

EXAMPLE 1.8

Composition of Functions Defined by Tables

Consider the functions ff and gg described by Table 1.4 and Table 1.5.

XX -3-3 —2-2 -1-1 0 1 2 3 4

f(X)F(x) 0 4 2 4 —2-2 0 —2-2 4

Tablel.4

XX —4-4 —2-2 0 2 4

g(x)g(x) 1 0 3 0 5

Tablel.5

Evaluate (gof)(3),(9°f)(0).(9°)(3).(g°)(0).
State the domain and range of (geof)(x).(gef)(x).
Evaluate (fof)(3),(fof)(1).(fof)(3),(fof)(1).

State the domain and range of (fof)(x).(fof)(x).

oo oe

EXAMPLE 1.9

Application Involving a Composite Function

A store is advertising a sale of 20%20% off all merchandise. Caroline has a coupon that entitles
her to an additional 15%15% off any item, including sale merchandise. If Caroline decides to
purchase an item with an original price of xx dollars, how much will she end up paying if she
applies her coupon to the sale price? Solve this problem by using a composite function.

CHECKPOINT 1.6

If items are on sale for 10%10% off their original price, and a customer has a coupon for an
additional 30%30% off, what will be the final price for an item that is originally xx dollars, after
applying the coupon to the sale price?

Symmetry of Functions

The graphs of certain functions have symmetry properties that help us understand the function
and the shape of its graph. For example, consider the
function f(x)=x4—2x2—3f(x)=x4—2x2—3 shown in Figure 1.13(a). If we take the part of the curve
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that lies to the right of the y-axis and flip it over the y-axis, it lays exactly on top of the curve to
the left of the y-axis. In this case, we say the function has symmetry about the y-axis. On the
other hand, consider the function f(x)=x3—4xf(x)=x3—4x shown in Figure 1.13(b). If we take the
graph and rotate it 180°180° about the origin, the new graph will look exactly the same. In this
case, we say the function has symmetry about the origin.

Yi Yi

L o "

fO)|=xt —2x2 — 3 f(x) = x3 — 4x

xY

—_— —_

(@) Symmetry about the y-axis (b) Symmetry about the origin
Figure 1.13 (a) A graph that is symmetric about the yy-axis. (b) A graph that is symmetric about

the origin.

If we are given the graph of a function, it is easy to see whether the graph has one of these
symmetry properties. But without a graph, how can we determine algebraically whether a
function ff has symmetry? Looking at Figure 1.14 again, we see that since ff is symmetric about
the yy-axis, if the point (x,y)(X,y) is on the graph, the point (—x,y)(—x.,y) is on the graph. In other
words, f(—x)=f(x).f(—x)=f(x). If a function ff has this property, we say ff is an even function,
which has symmetry about the y-axis. For example, f(x)=x2f(x)=x2 is even because

F(—X)=(—X)2=x2=F(X).f(—x)=(—x)2=x2={(X).

In contrast, looking at Figure 1.14 again, if a function ff is symmetric about the origin, then
whenever the point (X,y)(x,y) is on the graph, the point (—x,—y)(—x,—y) is also on the graph. In


https://openstax.org/books/calculus-volume-1/pages/1-1-review-of-functions#CNX_Calc_Figure_01_01_012
https://openstax.org/books/calculus-volume-1/pages/1-1-review-of-functions#CNX_Calc_Figure_01_01_013
https://openstax.org/books/calculus-volume-1/pages/1-1-review-of-functions#CNX_Calc_Figure_01_01_013

other words, f(—x)=—f(x).f(—x)=—f(x). If ff has this property, we say ff is an odd function, which
has symmetry about the origin. For example, f(x)=x3f(x)=x3 is odd because

F(—Xx)=(—%)3=—x3=—1(X) .f(—x)=(—x)3=—x3=—A1(x).
DEFINITION

If f(x)=F(—x)f(x)=f(—x) for all xx in the domain of f,f, then ff is an even function. An even
function is symmetric about the y-axis.

If f(—x)=—T(x)f(—x)=—1(x) for all xx in the domain of f,f, then ff is an odd function. An odd
function is symmetric about the origin.

EXAMPLE 1.10
Even and Odd Functions
Determine whether each of the following functions is even, odd, or neither.
a. f(X)=—5x4+7x2—2f(x)=—5x4+7x2-2
b. f(X)=2X5-4x+5f(x)=2x5-4x+5
c. F(X)=3xx2+1f(x)=3xx2+1
CHECKPOINT 1.7

Determine whether f(x)=4x3—-5xf(x)=4x3—5x is even, odd, or neither.

One symmetric function that arises frequently is the absolute value function, written
as |x|.|x|. The absolute value function is defined as

F(X)={—x,x<0x,x>0.f(x)={—x,x<0x,x>0.

1.2

Some students describe this function by stating that it “makes everything positive.” By the
definition of the absolute value function, we see that if x<0,x<0, then |x|=—x>0,|x|=—x>0, and
if x>0,x>0, then |x|=x>0.|x|=x>0. However, for x=0,|x|=0.x=0,|x|=0. Therefore, it is more
accurate to say that for all nonzero inputs, the output is positive, but if x=0,x=0, the

output |x|=0.|x|=0. We conclude that the range of the absolute value function

is {yly=>0}.{y|ly>0}. In Figure 1.14, we see that the absolute value function is symmetric about
the y-axis and is therefore an even function.
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=

fx) = x|

xY

Figure 1.14 The graph of f(x)=|x|f(x)=|x| is symmetric about the yy-axis.
EXAMPLE 1.11

Working with the Absolute Value Function

Find the domain and range of the function f(x)=2|x—3|+4.f(x)=2[x—3|+4.

CHECKPOINT 1.8

For the function f(x)=|x+2|-4,f(x)=|x+2|—4, find the domain and range.
Section 1.1 Exercises

For the following exercises, (a) determine the domain and the range of each relation, and (b)
state whether the relation is a function.

1.

XX yy XX yy
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XX yy XX yy
-1 1 9
0 0
2.
XX yy XX yy
-3 —2 1
—2 -8 8
-1 -1 —2
0 0
3.
XX yy XX yy
1 -3 1
2 —2 2
3 -1 3
0 0
4.
XX yy XX yy
1 1 1
2 1 1
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XX vy XX yy
3 1 7 1
4 1
S.

XX yy XX yy
3 3 15 1
5 2 21 2
8 1 33 3
10 0
6.

XX Yy XX yy
-7 11 1 —2
-2 5 3 4
-2 1 6 11
0 -1

For the following exercises, find the values for each function, if they exist, then simplify.
a. f(0)f(0) b. f(1)f(1) c. f(3)f(3) d. f(—x)f(—x) e. f(a)f(a) f. f(a+h)f(a+h)
7.

F(X)=5x—2f(x)=5x—2
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8.
f(X)=4x2-3x+1f(x)=4x2—3x+1
9.

f(x)=2xf(x)=2x

10.

F(X)=|x—7|+8f(x)=[x—7[+8

11.

f(x)=6x+5———— VF(x)=6x+5
12.
F(X)=Xx—23x+7f(x)=x—23x+7
13.

f(x)=9f(x)=9

For the following exercises, find the domain, range, and all zeros/intercepts, if any, of the
functions.

14.

f(X)=xx2—16f(x)=xx2—16

15.
g(x)=8x—1————g(x)=8x—1
16.

h(x)=3x2+4h(x)=3x2+4

17.

f(X)=—1+x+2— VE(x)=—1+x+2

18.
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f(X)=1x—9Vf(x)=1x—9
19.
g(X)=3x—4g(x)=3x—4
20.
f(X)=4[x+5[f(x)=4|x+5|
21,

g(x)=7x—-5—g(x)=7x—5

For the following exercises, set up a table to sketch the graph of each function using the
following values: x=-3,-2,-1,0,1,2,3.x=—3,-2,-1,0,1,2,3.

22,

f(x)=x2+1f(x)=x2+1

Xx yy XX yy
-3 10 1 2
-2 5 2 5
-1 2 3 10
0 1

F(X)=3x—6f(x)=3x—6

XX yy XX yy
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XX yy XX yy
-1 -9
0 —6
24.
f(X)=12x+1f(x)=12x+1

Xx yy XX yy

-3 -12-12 1 3232
—2 0 2 2
-1 1212 3 5252
0 1
25.
f(X)=2|x[f(x)=2lx|

XX yy XX yy
-3 6 2
-2 4 4
-1 2 6
0 0

26.

f(X)=—x2f(x)=—x2
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XX yy XX yy
-3 -9 1 -1
-2 4 2 —4
-1 -1 3 -9
0 0
27

F(x)=x3f(x)=x3

XX yy XX yy
-3 ~27 1 1
-2 -8 2 8
-1 -1 3 27
0 0

For the following exercises, use the vertical line test to determine whether each of the given
graphs represents a function. Assume that a graph continues at both ends if it extends beyond
the given grid. If the graph represents a function, then determine the following for each graph:

Domain and range

xX-intercept, if any (estimate where necessary)
yy-Intercept, if any (estimate where necessary)
The intervals for which the function is increasing
The intervals for which the function is decreasing
The intervals for which the function is constant
Symmetry about any axis and/or the origin
Whether the function is even, odd, or neither

S@ o o0 o

28.
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Ax
-0

1

—1+

—al

30.
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A%

+10

32.
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—1+

IBEEL X §
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-3 -2

-4

-5

—1+

IBEEL X §

34.



—1+

IBEEL X §
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For the following exercises, for each pair of functions, find
a. f+gf+g b. f—gf—g c. f-gf-g d. f/g.f/g. Determine the domain of each of these new functions.

36.

f(x)=3x+4,9(X)=x—2f(x)=3x+4,g(x)=x—2

37.

f(X)=x—8,9(X)=5x2f(x)=x—8,g(x)=5x2

38.
f(X)=3x2+4x+1,9(X)=x+1f(x)=3x2+4x+1,9(X)=x+1
39.
f(x)=9—x2,9(x)=x2—2x—3f(x)=9—x2,g(x)=x2—2x—3

40.
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f(X)=x—,g(X)=x—2f(x)=x,g(x)=x—2
41.

f(x)=6+1x,9(x)=1xf(x)=6+1x,g(x)=1x

For the following exercises, for each pair of functions, find a. (fog)(x)(feg)(x) and
b. (gef)(X)(gef)(x) Simplify the results. Find the domain of each of the results.

42.
f(x)=3x,9(X)=x+5f(X)=3%,g(X)=x+5

43,
f(X)=x+4,9(X)=4x—1f(x)=x+4,g(x)=4x—1
44,
f(X)=2x+4,(X)=x2—2f(x)=2x-+4,g(x)=x2—2
45,
f(X)=X2+7,9(X)=x2—3f(x)=x2+7,g(x)=x2-3
46.

£(X)=x—V,g(X)=x+9f(X)=X,g(X)=x+9

47,
f(x)=32x+1,g(X)=2xF(x)=32x+1,g(X)=2x
48,

f(X)=|x+1],g(X)=x2+x—4f(x)=[x+1],g(x)=x2+x—4
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66.
(feg)(1)(fog)(1)
67.
(fo0)(2)(fo0)(2)
68.
(9N(2)(g°N(2)
69.
(9°f)(3)(g°)(3)
70.
(9°9)(1)(g°9)(1)

71.

(foH)(3)(fN(3)

For the following exercises, use each pair of functions to find f(g(0)) f(g(0)) and g(f(0)). g(f(0)).
72.

f(X)=4x+8, g(X)=7—x2f(x)=4x+8, g(x)=7—x2

73.

F(X)=5x+7, g(x)=4—2x2f(x)=5x+7, g(x)=4—2x2

74.

f(X)=x+4———— vV, g(x)=12-x3f(x)=x+4, g(x)=12—x3

75.

f(X)=1x+2, g(X)=4x+3f(x)=1x+2, g(x)=4x+3
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For the following exercises, use the

functions f(x)=2x2+1 f(x)=2x2+1 and g(x)=3x+5 g(x)=3x+5 to evaluate or find the composite
function as indicated.

76.

f(9(2))f(9(2))

77.

flg(x)f(g(x))
78.
g9(f(=3))e(f(=3))
79.

(9°9)(x)(g°9)(x)

Extensions

For the following exercises, use f(x)=x3+1 f(x)=x3+1 and g(x)=x—1————— V3. g(x)=x—13.
80.

Find (feg)(x) (feg)(x) and (gof)(x). (gef)(x). Compare the two answers.

81.

Find (feg)(2) (fog)(2) and (gof)(2). (g°T)(2).

82.

What is the domain of (gof)(x)? (gof)(x)?

83.

What is the domain of (fog)(x)? (feg)(x)?
84.
Let f(x)=1x. f(x)=1x.

a. Find (fof)(x). (FoF)(X).
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b. s (fof)(x) (fof)(x) for any function f fthe same result as the answer to part (a) for any
function? Explain.

For the following exercises,
let F(X)=(x+1)5, F(x)=(x+1)5, f(X)=x5, f(x)=x5, and g(x)=x+1. g(x)=x+1.

85.

True or False: (gof)(X)=F(x). (gof)(X)=F(x).
86.
True or False: (fog)(X)=F(x). (fog)(X)=F(x).

For the following exercises, find the composition when f(x)=x2+2 f(x)=x2+2 for
all x>0 x>0 and g(x)=x—2———— V. g(x)=x—2.

87.

(fog)(6); (9o)(6)(fog)(6); (2°)(6)
88.

(gof)(a); (feg)(a)(geh)(a); (fog)(a)
89.

(feg)(11); (gof)(11)(Fog)(11); (gof)(11)

Real-World Applications
90.

The function D(p) D(p) gives the number of items that will be demanded when the price
isp. p. The production cost C(x) C(x) is the cost of producing x x items. To determine the cost
of production when the price is $6, you would do which of the following?

a. Evaluate D(C(6)). D(C(6)).
b. Evaluate C(D(6)). C(D(6)).
c. Solve D(C(x))=6. D(C(x))=6.
d. Solve C(D(p))=6. C(D(p))=6.

91.

The function A(d) A(d) gives the pain level on a scale of 0 to 10 experienced by a patient
withd d milligrams of a pain-reducing drug in her system. The milligrams of the drug in the
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patient’s system after t t minutes is modeled by m(t). m(t). Which of the following would you do
in order to determine when the patient will be at a pain level of 4?

Evaluate A(m(4)). A(m(4)).
Evaluate m(A(4)). m(A(4)).
Solve A(m(t))=4. A(m(t))=4.
Solve m(A(d))=4. m(A(d))=4.

oo o

92.

A store offers customers a 30% discount on the price X x of selected items. Then, the store takes
off an additional 15% at the cash register. Write a price function P(x) P(x) that computes the
final price of the item in terms of the original price x. x. (Hint: Use function composition to find
your answer.)

93.

A rain drop hitting a lake makes a circular ripple. If the radius, in inches, grows as a function of
time in minutes according to r(t)=25t+2———, r(t)=25t+2, find the area of the ripple as a
function of time. Find the area of the ripple at t=2. t=2.

94.

A forest fire leaves behind an area of grass burned in an expanding circular pattern. If the radius
of the circle of burning grass is increasing with time according to the
formula r(t)=2t+1, r(t)=2t+1, express the area burned as a function of time, t t (minutes).

95.
Use the function you found in the previous exercise to find the total area burned after 5 minutes.
96.

The radiusr, r, in inches, of a spherical balloon is related to the
volume, V, V, by r(V)=3V4n——3. r(V)=3V4x3. Air is pumped into the balloon, so the volume
after t tseconds is given by V(t)=10+20t. V(t)=10+20t.

a. Find the composite function r(\V(t)). r(V(t)).
b. Find the exact time when the radius reaches 10 inches.

97.

The number of bacteria in a refrigerated food product is given

by N(T)=23T2-56T+1, N(T)=23T2-56T+1, 3<T<33, 3<T<33, where T T is the temperature of
the food. When the food is removed from the refrigerator, the temperature is given

by T(t)=5t+1.5,T(t)=5t+1.5, where tt is the time in hours.
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a. Find the composite function N(T(t)). N(T(t)).
b. Find the time (round to two decimal places) when the bacteria count reaches 6752.

What we're building to

o To take the derivative of a vector-valued function, take the derivative of each component:
\begin{aligned} \dfrac{d}{dt} \left[ \begin{array}{c} x(t) \\ y(t) \end{array} \right] = \left[
\begin{array}{c} x'(t) \ y'(t) \end{array} \right] \end{aligned}dtd[x(t)y(t)]=[x'(t)y’'(t)]

« If you interpret the initial function as giving the position of a particle as a function of time, the

derivative gives the velocity vector of that particle as a function of time.
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\redE{\dfrac{d \vec{\textbf{s}} }{dt}(t) }dtds(t)\Large \greenE{\vec{\textbf{s}}(t)}s(t)

The derivative of a vector-valued function

Good news! Computing the derivative of a vector-valued function is nothing really new. As
such, I'll keep this article pretty short. The main new takeaway is interpreting the vector

derivative.

Dive in with an example

Let's start with a relatively simple vector-valued function \vec{\textbf{s}}(t)s(t)start bold text, s,
end bold text, with, vector, on top, left parenthesis, t, right parenthesis, with only two

components,

\begin{aligned} \vec{\textbf{s}}(t) = \left[ \begin{array}{c} 2 \sin(t) \\ 2 \cos(t/3)t \end{array}
\right] \end{aligned}s(t)=[2sin(t)2cos(t/3)t]

To take the derivative of \vec{\textbf{s}}sstart bold text, s, end bold text, with, vector, on top,

just take the derivative of each component:

\begin{aligned} \dfrac{d \vec{\textbf{s}}}{dt}(t) &= \left[ \begin{array}{c} \frac{d}{dt}(2
\sin(t)) \ \frac{d}{dt}(2 \cos(t/3))t \end{array} \right] \\ \\ &= \left[ \begin{array}{c} 2\cos(t) \\ 2
\cos(t/3) - \frac{2}{3}\sin(t/3)t \end{array} \right] \end{aligned}dtds(t)=[dtd(2sin(t))dtd
(2cos(t/3))t]=[2cos(t)2cos(t/3)—32sin(t/3)t]

You might also write this derivative as \vec{\textbf{s}}'(t)s'(t)start bold text, s, end bold text,
with, vector, on top, prime, left parenthesis, t, right parenthesis. This derivative is a new vector-
valued function, with the same input ttt that \vec{\textbf{s}}sstart bold text, s, end bold text,

with, vector, on top has, and whose output has the same number of dimensions.



More generally, if we write the components of \vec{\textbf{s}}sstart bold text, s, end bold text,
with, vector, on top as x(t)x(t)x, left parenthesis, t, right parenthesis and y(t)y(t)y, left

parenthesis, t, right parenthesis, we write its derivative like this:

\begin{aligned} \vec{\textbf{s}}'(t) = \left[ \begin{array}{c} x'(t) \\ y'(t) \end{array} \right]
\end{aligned}s'(t)=[x'(t)y’(t)]

Derivative gives a velocity vector.

For the example above, how can we visualize what the derivative means? First, to visualize

\begin{aligned} \vec{\textbf{s}}(t) = \left[ \begin{array}{c} 2 \sin(t) \\ 2 \cos(t/3)t \end{array}
\right] \end{aligned}s(t)=[2sin(t)2cos(t/3)t]

we note that the output has more dimensions than the input, so it is well-suited to be viewed as

a parametric function.

Each point on the curve represents the tip of a vector \left[ \begin{array}{c} 2 \sin(t_0) \\ 2
\cos(t_0/3)t_0 \end{array} \right][2sin(t0)2cos(t0/3)t0] for some specific number t_0tOt, start
subscript, 0, end subscript. For instance, when t_0=2t0=2t, start subscript, 0, end subscript,

equals, 2 we draw a vector to the point

\begin{aligned} \quad \vec{\textbf{s}}(2) = \left[ \begin{array}{c} 2 \sin(2) \\ 2 \cos(2/3)\cdot 2
\end{array} \right] \approx \left[ \begin{array}{c} 1.819 \\ 3.144 \end{array} \right]
\end{aligned}s(2)=[2sin(2)2cos(2/3)-2]~[1.8193.144]
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Vector for \vec{\textbf{s}}(2)s(2)start bold text, s, end bold text, with, vector, on top, left

parenthesis, 2, right parenthesis

When we do this for all possible inputs ttt, the tips of the vectors \vec{\textbf{s}}(t)s(t)start bold
text, s, end bold text, with, vector, on top, left parenthesis, t, right parenthesis will trace out a

certain curve:
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What do we get when we plug in some value of ttt, perhaps 222 again, to the derivative?

\begin{aligned} \quad \dfrac{d \vec{\textbf{s}}}{dt}(2) &= \left[ \begin{array}{c} 2\cos(2) \\ 2
\cos(2/3) - \frac{2}{3}\sin(2/3)\cdot 2 \end{array} \right]\\ &\approx \left[ \begin{array}{c} -
0.832 \\ 0.747 \end{array} \right] \end{aligned}dtds(2)=[2cos(2)2cos(2/3)—32sin(2/3)-2
]~[-0.8320.747]

This is also some two-dimensional vector.
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Vector for \dfrac{d \vec{\textbf{s}}}{dt}(2)dtds(2)start fraction, d, start bold text, s, end bold

text, with, vector, on top, divided by, d, t, end fraction, left parenthesis, 2, right parenthesis

It's hard to see what this derivative vector represents when it just sits at the origin, but if we shift
it so that its tail sits on the tip of the vector \vec{\textbf{s}}(2)s(2)start bold text, s, end bold text,

with, vector, on top, left parenthesis, 2, right parenthesis, it has a wonderful interpretation:



If \vec{\textbf{s}}(t)s(t)start bold text, s, end bold text, with, vector, on top, left parenthesis,
t, right parenthesis represents the position of a traveling particle as a function of

time, \dfrac{d \vec{\textbf{s}}}{dt}(t_0)dtds(tO)start fraction, d, start bold text, s, end bold
text, with, vector, on top, divided by, d, t, end fraction, left parenthesis, t, start subscript, 0,
end subscript, right parenthesis is the velocity vector of that particle at time t_0tOt, start

subscript, 0, end subscript.
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Derivative is a velocity vector tangent to the curve.

In particular, this means the direction of the vector is tangent to the curve, and its magnitude
indicates the speed at which one travels along this curve as ttt increases at a constant rate (as time

tends to do).

Concept Check: Suppose the position in two-dimensional space of a particle, as a function of

time, is given by the function

\begin{aligned} \quad \vec{\textbf{s}}(t) = \left[ \begin{array}{c} t"2 \\ t*3 \end{array} \right]
\end{aligned}s(t)=[t2t3]

Derivatives of Vector-Valued Functions
Definition of Vector-Valued Functions

A vector-valued function of one variable in Cartesian 3D space has the form
r(t)=f()i+g(t)j+h(t)k or r()=(f(t),g(t).h(1)),
where f(t), g(t), h(t) are called the component functions.
Similarly, a vector-valued function in in Cartesian 2D space is given by
r(t)=f()i+g(t)j or r(t)=(f(t).9(1))-

Limits and Continuity of Vector-Valued Functions

Suppose that r(t)=(f(t),g(t),h(t)). The limit of r(t) as t approaches a is given by
limt—ar(t)=limt—a(f(t),g(t),h(t))=(limt—af(t),limt—ag(t),limt—ah(t)),
provided the limit of the component functions exist.



The vector-valued function r(t) is continuous at t=a if
limt—ar(t)=r(a).
Derivative of a Vector-Valued Function

The derivative r'(t) of the vector-valued function r(t) is defined by
drdt=r'(t)=limAt—0r(t+At)—r(t)At

for any values of t for which the limit exists.

The vector r'(t) is called the tangent vector to the curve defined by r.
If r(t)=(f(t),g(t),n(t)) where f,g and h are differentiable functions, then
r'()=(f'(t),g'(t),h'(V)).

Thus, we can differentiate vector-valued functions by differentiating their component functions.

Physical Interpretation

If r(t) represents the position of a particle, then the derivative is the velocity of the particle:
v(t)=drdt=r'(t).

The speed of the particle is the magnitude of the velocity vector:

V(I = V(F(0)2+(g'(£)2+(h'(1))2.

In a similar way, the derivative of the velocity is the acceleration:

a(t)=dvdt=v'(t)=r"(t).

UNIT 6 INTEGRATION

6.1 Introduction

o Determine the concept of the integral as an accumulator

e Explain integration as inverse process of differentiation

e Explain constant of integration

Describe simple standard integrals which directly follow from standard differentiation
formulae.

The Definite Integral as an Accumulator

Louis A. Talman Department of Mathematical & Computer Sciences Metropolitan State College
of Denver

May 1, 2005

In the last few years, the committee that writes the AP Calculus exams has placed a number of
problems on those exams that require candidates to think of the definite integral as an
accumulator. Thus, Jennifer Nichols asks “Have any of you found good resources on practice



problems for the students on the topic of accumulated change? I created my own a couple of
years ago, but they aren’t realistic and they honestly aren’t very good. With my created
questions, | have been teaching my students the equivalent of a half chapter on ‘accumulation
functions’, but I need better questions. I know there are many collegeboard samples on old
exams, but I like to save those for review time, so I need outside resources.” Properlyread,
thestandardproofoftheFundamental TheoremofCalculusthatappears in most elementary calculus
texts gives us a good clue as to how to answer this question. That argument suggests that many
of the settings in which we use definite integrals can be thought of as settings in which we use
those integrals as accumulators. The accumulator approach is best seen by approaching standard
definite integral problems—problems we usually solve by thinking of the definite integral as a
limit of Riemann sums—Dby way of accumulation instead. | would like to suggest that we should
teach students this approach to setting up definite integral problems in addition to the standard
Riemann sum approach. Here are some examples.

Example 1
Find the area inside the first quadrant lobe of the polar curve f(8) = sin26.

Solution: Let 60 be any first-quadrant angle in standard position, and let A(60) be the area that
lies inside the first-quadrant lobe of f(8) = sin26 and between the rays 6 = 0 and 6 = 60. (See
Figure 1, where we have chosen a specific value for 80 and colored A(60) turquoise.) The
function A accumulates area inside the lobe as we vary 60 from 0 to n/2. Select a small positive
number AO. The region R cut off from the lobe by the rays 6 = 00 and 6 = 60 +A0 is R ={(r,0) :
0<r <1(0), 60 <6 <60 +AB}, and the area of R is given by A(60 + A0)—A(00). (This region lies
inside the lobe and between the two blue rays shown in Figure 1.)
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Figure 1: r = sin 20

Appealing once more to the continuity of f, we see that there must be a number #*
somewhere in [fy, 8y + A#] such that

1

Now 0 7— f(0) is a continuous function on the interval [60,00 + A6], so r(0) takes on both a
maximum value, rM and a minimum value, rm in that interval. The sector {(r,0) : 0<r <rm, 00 <
0 <00 +A0} is completely contained by the region R, and the sector {(r,0) : 0<r<rM, 00 <0 <
00 +A0} completely contains R. Hence 1 2r2 mAO < A(60 +A0)—A(00) < 1 2r2 MAS. (1)

Figure 1: r =sin26 Appealing once more to the continuity of f, we see that there must be a
number 6* somewhere in [00,00 +A0] such that A(60 +AB8)—A(00) =1 2 [{f(6%)]2 AB. (2) In
Figure 1, r = f(0x) is shown as a short red arc. It is placed so that the area contained in the sector
that it defines together with the rays 6 = 60 and 6 = 00 +A0 is the same as the area of the “wedge”
cut from the larger region inside the curve r = f(0) by the same two rays. We have therefore
shown that for every sufficiently small A0 > 0 there is 0* in the interval [00,00 +A0] such that
A(60 +A0)—A(00) AO =1 2 [f(0%)]2 . (3)



A5) - 4(5)-0 0

w2
= A'(0) di (5)
41
1 .
S ORT ©
1
= E/.; gin® 20 df (7)
= E' '[3}

AnaltogethersimilarargumentestablishesthatacorrespondingstatementistrueifAf < 0 is small
enough. We now pass to the limit as AG — 0 in equation (3). Because 0+ is constrained to lie
between 00 and 60 + AB, we conclude that 0x — 00 as AB — 0. Therefore, by the continuity of f,
limA6—0 f(0x) = £(60). It then follows that AO(0) = [(0)]2/2 for every 0 in the interval [0,m/2].
Finally, we apply the Fundamental Theorem of Calculus to conclude that An 2= An 2—A(0) (4) =
Zw/2 0 A0(0)dO (5)=12Zn/2 0 [{(0)]2 d6 (6) = 1 2Zn/2 0 sin2 26d6 (7) == 8. (8)

Example 2

Find the amount of work done in stretching a spring (of spring constant K) from equilibrium to a
point 2 units from equilibrium. (Assume that Hooke’s Law is valid for the spring throughout the
interval in question.)

Solution: According to Hooke’s Law, the restoring force F exerted by the spring when it is
stretched to a point x units from its equilibrium is given by F = —Kx, the minus sign arising from
the fact that the force acts in the direction opposite the displacement. To stretch the spring, we
must exert a force f equal in magnitude to F and in the opposite direction. Thus, the stretching
force is given by f = Kx. For each x0, 0 < x0 < 2, let W(x0) be the amount of work we must do to
stretch the spring from equilibrium at x = 0 to x = x0. (We can think of W(x0) as the energy we
have stored in the spring when it is stretched to x = x0, so that W accumulates energy.) For x0 <
2 we choose Ax > 0 and we suppose that x0 +Ax <2. Now W(x0 + Ax)—W(x0) is the amount of
work done in streching the spring from x = x0 to x = x0+Ax. Ateachpoint x ofthisinterval,
theforcewemustexertonthespring is given by f = Kx. Moreover, x0 < x <x0 +Ax implies that Kx0
< Kx < K(x0 +Ax). Hence Kx0Ax < W(x0 +Ax)—W(x0) < K(x0 +Ax)Ax Consequently, there is a
number xx* in the interval [x0,x0 +Ax] such that W(x0 +Ax)—W(x0) = Kx*AXx, or W(x0
+Ax)—W(x0) Ax = Kx*.

3

Because x0 < x* < x0 +Ax, we have limAx—0 Kx* = Kx0. Hence, WO[x0] = KxO. it now
follows from the Fundamental Theorem of Calculus that W(2) = W(2)-W(0) (9) = Z2 0 WO(x)dx
(10) = KZ2 0 xdx (11) = 2K. (12)



KroAz < W(zg+ Az) — W(ze) < K(ze+ Az)Az

Consequently, there is a number z* in the interval [zg, zp + Ax| such that

Wixg + Ax) — Wi(xy) = Kae'Ax, or
W - W
(zo + Ax) — Wizg) Kot
A

Because zg < &* < @y + Az, we have lima, g K" = Kzg. Hence, Wxg] = Kxg. 1t now
follows from the Fundamental Theorem of Calculus that

W(2) — W(2) —W(0) (9)
2
= fﬁ”{;r-jd;r- (10}
[1]
2
- K T dr 11
j‘;’r x (11)

Example 3

The base of a certain solid is the unit circle in the xy-plane. Every vertical cross-section of this
solid perpendicular to the x-axis is an equilateral triangle. Find the volume of the solid. Solution:
If 1<t <1, let V (t) denote the volume of that portion of this solid that lies between the planes x
=—1 and x = t. The function V accumulates volume as we increase t through the interval [—1,1].
Choose t0 in [—1,1), and let At > 0 be small enough that t0 +At lies in [—1,1] as well. We consider
the diff erence V (t0 +At)—V (t0), which is the volume of the solid S cut off by the two planes x =
t0 and x = t0 +At. If x lies in the interval [t0,t0 +At], then the upper half of the curve x2 +y2 =1
(which is the boundary of the base of S) is given by y = V1—x2 and the lower half is given by y =
—V1-x2. The left face of S is the equilateral triangle perpendicular to the xaxis, whose base is the
interval connecting (t0,—p1—t2 0,0) to (t0,p1—t2 0,0), and whose vertex is at (t0,0,N3p1—t2 0).
The right face of S is the equilateral triangle perpendicular to the x-axis, whose base is the
interval connecting (t0 +At,—p1—(t0 +At)2,0) to (t0 + At,p1—(t0 +At)2,0), and whose vertex is at
(t0 +At,0,¥3p1—(t0 +At)2). Now the function G : t 7—1—t2 is continuous on the interval [t0,t0
+At], so it takes on a minimum value bm and a maximum value bM in that interval. The cylinder



whose height is At and whose base is an equilateral triangle of base 2bm will fit entirely inside of
S, while the cylinder whose height is At and whose base is an equilateral triangle of base 2bM
will entirely contain S. Consequently, b2 mV3At<V (t0 +At)—V (t0) < b2 MA3AL. (13)
Continuity of the function G now guarantees that there is a number tx in the interval [t0,t0 +At]
such that V (t0 +At)—V (t0) = [G(t*)]2V3At (14) = V3[1—(t*)2]At. (15) We have thus shown that
whatever t0 € [—1,1) we may choose, and whatever At > 0 may be, there is t*€[t0,t0 +At] such
that V (t0 +At)—V (t0) At = V3h1—(t*)2i. 4

An entirely similar argument shows that we can write a similar equation when At <0, and it
follows, again from the continuity of G, that

VO(t0) = lim At—0

V (t0 +At)—V (t0) At = V3 (1-t2 0). The Fundamental Theorem of Calculus now assures us that
the required volume, which is V (1), is given by V (1) =V (1)-V (-1) = Z1 —1 VO(t)dt = V3Z1
—1 (1-t2)dt = 4 3.



HABAL < Vitg+ A1) — Vi) = bv3AL (13}

Clomtinmity of the fonction & now puarantees that there 8 a oomber £ in the interval
[t t + Sk] amch that

V(ty + At) — Vitg) [G(t*)]*V3AL (14)
V(L ()], (15)
W hawe thus shown that whatever & © |1, 1) we may choose, and whatevor Af = (0
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V1), is given by
V(1) Vil) = V(1)
1

f Vi)
]

Vi [l (1 — %) i
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Example 4

The region bounded by the x-axis, the lines x = 1 and x = 4, and the curve y = 5/4+sin(nx/2) is
revolved about the y-axis. Find the resulting volume.

Solution: Let V be the volume accumulation function: For each choice of x0 in [1,4], V (x0) is
the volume generated by revolving the region bounded by the x-axis, the lines x =1 and x = x0,
and the curve y = 5/4+sin(nx/2) about the y-axis.

(See Figure 2.) Let x0 be in the interval [1,4), and choose Ax > 0 but small enough that x0 + Ax
lies in [1,4]. Then V (x0 + Ax) — V (x0) gives the volume of the solid S generated by revolving
the region bounded by the x-axis, the lines x = x0 and x = x0 + Ax, and the curve y =
5/4+sin(mx/2) about the y-axis. The volume of S is very nearly the volume of a cylindrical shell.
Let mAx denote the minimum value of 5/4+sin(nx/2) on the interval [x0,x0+Ax], and let



MAxdenote the maximum value. (Continuity assures us that these values exist.) If we revolve the
rectangular region bounded by the x-axis, the line x = x0, the line x = x0+Ax, and the line y =
mAx about the y-axis, we obtain a cylindrical shell that lies entirely inside of the solid S. If we
replace the line y = mAx with the line y = MAx and again revolve the rectangle about the y-axis,
we obtain another cylindrical shell that entirely contains the solid W. Now the volume generated
by revolving the smaller rectangle about the y-axis is tmAx[(x0 +Ax)2—x2 0], and the volume
generated by revolving the larger rectangle about the y-axis is tMAx[(x0 +Ax)2 —x2 0]. Thus

simalog | Aal® o wl € Wiag b As) o Wl 0 abagllsg b Ay ad]. ()
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Figure 2: y = 5/4+sin(nx/2) = n[2x0Ax +(Ax)2]5 4

+sinmx* 2 . (18) Thus, for each Ax > 0, there is a number x* in the interval [x0,x0 +Ax] such that
V (x0 +Ax)—V (x0) Ax = (2x0 +Ax)5 4 +sinmx* 2 . (19) A similar argument establishes a
similar equation for Ax < 0, and it now follows from continuity that VO(x0) = 2ax05 4 +sinnx0 2
. (20) We have now only to apply the Fundamental Theorem of Calculus to conclude that the
volume we seek is V (4) =V (4)—V (1) 21) =Z4 1 VO(x)dx (22) =2nZ4 1 5 4x + xsinnx 2dx
(23)=75n4-16— 8. (24)



6.2  Rules of Integration

e Recognize the following rules of integration:

I f ~f(0)ld ff(X)dx =f(x)+c

1. Where c is a constant of integration.
1. The integral of the product of a constant and a function is the product of the constant and
the integral of the function.
IV.  The integral of the sum of a finite number of functions is equal to the sum of their
integrals.
e Use standard differentiation formulae to prove the results for the following integrals:

L JIFGO)f (x)dx

f(x)
1. ff(x)

o [e™[af(x) +f ()]dx
Integration as the inverse process of differentiation

Let us see the introduction of Integration as an inverse process of differentiation. For finding the
integrals and antiderivatives we use the method of integration as an inverse process of
differentiation. We need to find the antiderivatives if we use the fundamental theorem of
calculus. For this reason integration as an inverse process of differentiation plays an important
key role in mathematics. We discuss the fundamental theorem of Integral calculus.

Idea about an integral

If a function f is differentiable in an interval |, i.e., its derivative f’ exists at each point of I, then a
natural question arises that given " at each point of I, can we determine the function? The
functions that could possibly have given function as a derivative are called anti derivatives (or
primitive) of the function.

Further, the formula that gives all these anti derivatives is called the indefinite integral of the
function and such process of finding anti derivatives is called integration. This is the basic idea
about the integrals.



gradeup

Indefinite Integral

Integration as the Inverse
Process of Differentiation

Integration is the way of inverse process of differentiation. Instead of differentiating a function,
we are given the derivative of a function and asked to find its primitive, i.e., the original
function. Such a process is called integration or anti differentiation.

Let us consider the following examples:

We know that

(d/dx) sin x = cos x -(1)

In this operation (1), the trigonometric function sine with the variable x is differentiated as the
cosine function. This is the anti-derivative function while we work with integrals of
trigonometric function cosine it is integrated as to sine function. These forms worked with
different basic functions as we said are the ideas of an integral.

Indefinite integrals of standard functions

Basic formulae:

d 4 Iﬂ:—'_ ] IH:—'_
‘=.1: = | x"dy=— +c.n=-1

del n+1, n+1

d

_{'jﬁ|x|)=l ::Jiffr:=fﬁ|x|— ¢
iy X X

i{'e‘”'}= > = le*dv=¢"+ ¢
fft- 1 A



T

d . . " . ﬂ -
—(ﬂ“)=(ﬂ“fﬁﬂ) = ladi=——+c (a>0)
" - Ina ) '
d . " i .
—(sinx)=cosx = Jcosxdy=sinx+c

ff.{_- . F

] . . -

—(cosx ) =—sinx = |sinxdy=—cosx=+c

ff.{_- i F

d - : " :

—(tanx)=sec x = |sec  xdyr=tanx +c

ff.{_- .y F

d . . -

E[cosec x)=(—cotx cosecx) =»|cosecx cotxdr =—cosecx +c
d . -

E[Secxlhsecx tan x = |secx tanxdv =secx +¢

d B . r 5

E[cotx_} =—cosec x = |cosec xdx=—cotx+¢

Standard Formulae:

- +C
rC+a
fﬁ 2 p
| — :=IF'T‘I—"~|I|I —a|+c
T —a
| ﬂff‘f _ lm|r—ﬂ .
T —a 2da |1:—




- - . | _‘{- = = a = =

Isfx +adi=—~x"+a +—Inx+~x +a|+c
7 7

S = Y S a’ S =

Ifx" —ade=—x"—a ——Inlx+~Jx"—a |+c
2 2

I X 7 2 a . X

lfa —x"dx=—+a —x " +—smm —=+¢
2 2 a

Example:

Evaluate | sin x /1 + sin x dx.

Solution:

=sinx+1-1-=1-1/1+sin x 1-sinx/1-sin X

=1-1-sinx / 1-sin® = 1 —1 / cos® x — sinx / cos® x = 1 — sec? X — sec x tan X
Now d/dx (x — tan X — sec X) = 1 — sec’ X — sec X tan X

[ (1 —sec2 x — sec x tan x) dx = X — tan X — sec X + c.

Example:

Evaluate [ sin®x+c0s%x / sin®x cos?x dx.

Solution:
-3 3 -3 -3

SIFT X +CO5 X . ST X . SIFTX

| — k= dv+]—— " dx
S XCO5™ X SIN XCOS X SN XCOos5 X

= [ tanxsecx dx + | cot x cosecx dx

= SecxX —cosecx +c



Constant of Integration

Since the derivative of a constant is zero, any constant may be added to an indefinite

integral (i.e., antiderivative) and will still correspond to the same integral. Another way of stating
this is that the antiderivative is a nonunique inverse of the derivative. For this reason, indefinite
integrals are often written in the form

ff{x]dx =Fx)+C,

where C is an arbitrary constant known as the constant of integration.

The Wolfram Language returns indefinite integrals without constants of integration. This means
that, depending on the form used for the integrand, antiderivatives 1 and 2 can be obtained that
differ by a constant.

Integration by Substitution
" In this topic we shall see an important method for evaluating many complicated integrals.

Substitution for integrals corresponds to the chain rule for derivatives.

Suppose that F(u) is an antiderivative of f(u):
[f(u)du=F(u)+C.
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Assuming that u=u(x) is a differentiable function and using the chain rule, we have
ddxF(u(x))=F'(u(x))u'(x)=f(u(x))u'(x).
Integrating both sides gives

[fu(x))u'(x)dx=F(u(x))+C.
Hence

[fu(x))u'(x)dx=[f(u)du,whereu=u(x).

This is the substitution rule formula for indefinite integrals.

Note that the integral on the left is expressed in terms of the variable x. The integral on the right
IS in terms of u.

The substitution method (also called u—substitution) is used when an integral contains some
function and its derivative. In this case, we can set u equal to the function and rewrite the integral
in terms of the new variable u. This makes the integral easier to solve.

Do not forget to express the final answer in terms of the original variable x!

Solved Problems

Example 1

Compute the integral [ex2dx.
Example 2

Find the integral J(3x+2)5dx.
Example 3

Find the integral JdxV1+4x.
Example 4

Evaluate the integral [xdxV1+x2.
Example 5

Calculate the integral [dxVa2—x2.
Example 6

Evaluate the integral [x2x3+1dx using an appropriate substitution.
Example 7

Find the integral [3V1-3xdx.


https://www.math24.net/chain-rule/

Example 8
Find the integral Jx+1x2+2x—5dx.

Example 9

Compute the integral [xdx1+x4.

Example 10

Evaluate the integral [xdxx4+2x2+1.

Example 11

Calculate the integral [2xexdx.

Example 12
Find the integral Jxe—x2dx.

Example 13

Evaluate the integral [sinx 1 —cosxdx.

Example 14

Evaluate the integral [xVx-+1dx.

Example 15
Calculate the integral Jcot(3x+5)dx.

Example 16
Find the integral Jsin2xV1+cos2xdx.

Example 1.
Compute the integral Jex2dx.

Solution.

Let u=x2. Then
du=dx2,=dx=2du.

So now we can easily integrate:

[ex2dx=Jeu-2du=2Jeudu=2eu+C=2ex2+C.
Example 2.

Find the integral J(3x+2)5dx.

Solution.

We make the substitution u=3x+2. Then
du=d(3x+2)=3dx.

So the differential dx is given by
dx=du3.



Plug all this in the integral:

[(3x+2)5dx=[u5du3=13[u5du=13-u66+C=u618+C=(3x+2)618+C.
Example 3.

Find the integral JdxV1+4x.

Solution.

We can try to use the substitution u=1+4x. Hence
du=d(1+4x)=4dx,

SO

dx=du4.
This yields

[dxV1+4x=[dud\u=14]duvu=14Ju—12du=14-u1212+C=14-2ul12+C=ul122+C=Au2+C=V1+4x2+C

Example 4.
Evaluate the integral [xdxV1+x2.

Solution.

Let u=1+x2. Then
du=d(1+x2)=2xdx.
We see that

xdx=du?2.
Hence

f xdxV1 +x2=f du2 \/u=f du2Vu=vu+C=v1+x2+C.
Example 5.

Calculate the integral [dxVa2—x2.

Solution.

Let u=xa. Then x=au, dx=adu. Hence, the integral is

[dx\a2—x2=[aduVa2—(au)2=[aduva2(1-u2)=/adua1—u2=[du\1-u2=arcsinu+C=arcsinxa+C.
Example 6.

Evaluate the integral [x2x3+1dx using an appropriate substitution.

Solution.

We try the substitution u=x3+1.
Calculate the differential du:
du=d(x3+1)=3x2dx.

We see from the last expression that

x2dx=du3,



so we can rewrite the integral in terms of the new variable u:
[=/x2x3+1dx=]du3u=[du3u.
Now we can easily evaluate this integral:

I=[du3u=13/duu=13Infu[+C.
Express the result in terms of the variable x:
I=13In|u[+C=13In||x3+1]|+C.

Integration by Parts is a special method of integration that is often useful when two functions are
multiplied together, but is also helpful in other ways.

You will see plenty of examples soon, but first let us see the rule:
fuvdx =ufvdx —Ju' (Jvdx) dx
e U is the function u(x)

e Vvisthe function v(x)

e U'is the derivative of the function u(x)

As a diagram:

(v de
I

-

u jvdx - Ju'('[v o) dx

Let's get straight into an example, and talk about it after:


https://www.mathsisfun.com/calculus/derivatives-rules.html

Example: What is [x cos(x) dx ?
OK, we have x multiplied by cos(x), so integration by parts is a good choice.
First choose which functions for u and v:

e U=X

e Vv =cos(x)
So now it is in the format Ju v dx we can proceed:

Differentiate u: u'=x'=1

Integrate v: Jv dx = Jcos(x) dx =sin(x) (see Integration Rules )

Now we can put it together:

x sin(x) - .[1 (H[ITL_\'Z‘) dx
Simplify and solve:

x sin(x) — Jsin(x) dx

x sin(x) + cos(x) + C

So we followed these steps:

e Chooseuandv

« Differentiate u: u'

o Integrate v: [v dx

e Putu, u'and Jv dx into: ulv dx —fu' (Jv dx) dx

o Simplify and solve


https://www.mathsisfun.com/calculus/integration-rules.html

In English, to help you remember, Ju v dx becomes:

(u integral v) minus integral of (derivative u, integral v)

Let's try some more examples:

Example: What is [In(x)/x2 dx ?

First choose u and v:

e u=1In(x)

o« v=1/X

Differentiate u: In(x)' = 1/x
Integrate v: J1/x% dx = [x > dx =—x1 = -1/x (by the power rule )

Now put it together:

Simplify:

—In(x)/x — [-1/x? dx = —In(x)/x — 1/x + C
—(In(x) + 1)/x + C

Example: What is [In(x) dx ?
But there is only one function! How do we choose u and v ?

Hey! We can just choose v as being "1":


https://www.mathsisfun.com/calculus/integration-rules.html

e u=Inx)

e v=1
Differentiate u: In(x)' = 1/x
Integrate v: [1 dx =x

Now put it together:

x-x - [ (x)dx

X

Simplify:

x In(x) —[1dx =x In(x) —x + C

Example: What is [exx dx ?

Choose u and v:

Differentiate u: (¢*)' = &*
Integrate v: Jx dx = x°/2

Now put it together:



_[Exxdx

W | velx

— X

']

eX - - jex(g)dx

Well, that was a spectacular disaster! It just got more complicated.

Maybe we could choose a different u and v?

Example: [ex x dx (continued)

Choose u and v differently:

Differentiate u: (x)'=1
Integrate v: Je* dx = ¥
Now put it together:

Ixexdx
[

| | vlx

— N

X eX - ‘[ 1 (tx)d_x

Simplify:
xe*—e*+C

e'(x-1)+C

The moral of the story: Choose u and v carefully!



Choose a u that gets simpler when you differentiate it and a v that doesn't get any more
complicated when you integrate it.

A helpful rule of thumb is I LATE. Choose u based on which of these comes first:

I Inverse trigonometric functions such as sin™(x), cos™(x), tan™(x)

L: Logarithmic functions such as In(x), log(x)
A: Algebraic functions such as x%, x°
T: Trigonometric functions such as sin(x), cos(x), tan (x)

E: Exponential functions such as e*, 3*

And here is one last (and tricky) example:

Example: [ex sin(x) dx
Choose u and v:
u = sin(x)
v=¢
Differentiate u: sin(x)' = cos(x)
Integrate v: Je* dx = ¥
Now put it together:

[e* sin(x) dx = sin(x) e* -Jcos(x) ¢* dx

Looks worse, but let us persist! We can use integration by parts again:
Choose u and v:

u = cos(x)

v=¢"

Differentiate u: cos(x)' = -sin(x)
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Integrate v: Je* dx = e

Now put it together:

Je* sin(x) dx = sin(x) e* - (cos(x) e* —[—sin(x) ¢* dx)

Simplify:

[e* sin(x) dx = e*sin(x) - e* cos(x) —J €* sin(x)dx

Now we have the same integral on both sides (except one is subtracted) ...
... 0 bring the right hand one over to the left and we get:

2Je* sin(x) dx = e* sin(x) — ¢* cos(X)

Simplify:

[e* sin(x) dx = e* (sin(x) - cos(x)) / 2 + C

Footnote: Where Did "Integration by Parts" Come From?

It is based on the Product Rule for Derivatives :

(uv)'=uv' +u'v

Integrate both sides and rearrange:

[(uv) dx = Juv' dx + Ju'v dx

uv = Juv' dx + Ju'v dx

fuv' dx = uv — Ju'v dx

Some people prefer that last form, but I like to integrate V' so the left side is simple:
Juv dx = ufv dx — Ju'(Jv dx) dx
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Integration Techniques

Many integration formulas can be derived directly from their corresponding derivative formulas,
while other integration problems require more work. Some that require more work are
substitution and change of variables, integration by parts, trigonometric integrals, and
trigonometric substitutions.

Basic formulas

Most of the following basic formulas directly follow the differentiation rules.

. fkﬂx}dx=&fﬂx]dx
[0 £g0]de= [ frodet [ gtods
f&wmc

fx'dr=-ﬁl_l_:-il-+{:,n;&-l
fsinx.six=—cnsx+€
fmsxa’x=sinx+ C
fs:clxdx= tanx + C
fcsczxdr=—l:0tx+ C
f secxtanxdx=secx + C
fcscxcatxdx -csex+ C
fs de=e" +C

fﬂ dr—
f%=ln|x|+ C

N

© o ~N o U A

11.

12.
13.
" tanxdx == In|cosx| + C
15-fcmx¢£x=ln|sinx|+ C

16, fstcxdx=ln|se-:x+ tanx|+ C

cscx:ir - ln|c.scx+ cntx] +C

f —arcsm~—+C
18. ,# a —x*

10. f ——arctan§+C'



F] 2 i
X —a

f dx =1 arcsec% +C
20.7 x

Fi
Example 1: Evaluate fx

5
4 X
=2+
Using formula (4) from the preceding list, you find thatf"'Ir ds 5 C.

f%dx.

Example 2: Evaluate

Because 1/ J; =x"% using formula (4) from the preceding list yields

f%dx=fx'mdr

_X_
==+C

2
=2x"+ C

2 —
Example 3: Evaluatef{ﬁx +5x=3)dx

Applying formulas (1), (2), (3), and (4), you find that

5 1
f(5x1+5x—3m=%+i§--3x+c

=2+ 3 x=3x+C

_dx_
Example 4: Evaluate fx+ 4"



_dx_ _
Using formula (13), you find that fx ¥4 - In|x+4|+C

dx
Example 5: Evaluate f 25+x"

Using formula (19) with a = 5, you find that

f 25?:;1 = %arctan% +C

Substitution and change of variables

One of the integration techniques that is useful in evaluating indefinite integrals that do not seem
to fit the basic formulas is substitution and change of variables. This technique is often
compared to the chain rule for differentiation because they both apply to composite functions. In
this method, the inside function of the composition is usually replaced by a single variable
(often u). Note that the derivative or a constant multiple of the derivative of the inside function
must be a factor of the integrand.

The purpose in using the substitution technique is to rewrite the integration problem in terms of
the new variable so that one or more of the basic integration formulas can then be applied.
Although this approach may seem like more work initially, it will eventually make the indefinite
integral much easier to evaluate.

Note that for the final answer to make sense, it must be written in terms of the original variable
of integration.

fxz[x’+ 1) dx.

Example 6: Evaluate

Because the inside function of the composition is x * + 1, substitute with

u=x"+1
du=3x"dx

%a’u=xzdx



hence, fleixj+l}’afr=%fuﬁdu

Example 7: Evaluate f sin (5x) dx.

Because the inside function of the composition is 5 x, substitute with

u=5x

du= Sdx
1 _
gﬂfu— dx
hence, fsin[ix}ir=%fsinudru

=- %cusu +C

=- %cus{Sx} +C

f Fx dx'.
Example 8: Evaluate ; 9 —x*



Because the inside function of the composition is 9 — x 2, substitute with

u=9-x’
du=— 2xdx
--Ldu=xdx
1
hence, f = f du
J9=x?
=—% u " du
3 W
B A
2
Jl_3..!.‘.!.!'2_"_(:-

==3/9-x"+C

Integration by parts

Another integration technique to consider in evaluating indefinite integrals that do not fit the
basic formulas is integration by parts. You may consider this method when the integrand is a
single transcendental function or a product of an algebraic function and a transcendental
function. The basic formula for integration by parts is

fudv= uﬂ-fzrdu

where u and v are differential functions of the variable of integration.

A general rule of thumb to follow is to first choose dv as the most complicated part of the
integrand that can be easily integrated to find v. The u function will be the remaining part of the
integrand that will be differentiated to find du. The goal of this technique is to find an integral,
[ v du, which is easier to evaluate than the original integral.

Example 9: Evaluate | x sec 2 x dx.



Letx=x and dv=sec’ xdx
du=dx v=rtanx

hence, fxsccixnfx=xtanx-ftanxafx

= xtanx — (—ln|msx|) +C

=xtanx + In|cosx|+ C

Example 10: Evaluate | x * In x dx.

Let #=In x and dv=x" dx

a"u=§¢£¥ F=‘%‘-‘
5 5
hence, fx‘lnxdx= %]nx—f%-%dw
5
=%lnx-%f:‘dt

=%x51nx-2—15x*+ C

Example 11: Evaluate [ arctan x dx.

Letu = arctanx and dv = dx

du=— < de v=x
1 +x

hence, f arctanx dx = xarctanx — f l%f dx
x

= xarctanx — % In(1+x*)+C



Integrals involving powers of the trigonometric functions must often be manipulated to get them
into a form in which the basic integration formulas can be applied. It is extremely important for
you to be familiar with the basic trigonometric identities, because you often used these to rewrite
the integrand in a more workable form. As in integration by parts, the goal is to find an integral
that is easier to evaluate than the original integral.

Example 12: Evaluate | cos % x sin * x dx

3. 4 . 4
fcos*sm xsir=fcoszx5m xcosxdx

_ . 2y e 4

= fl[l = sin” x)sin” xcosxdx
. 4 N

=f{sm x—sin x)cosxdx
a4 = 6

=fsm xcﬂsxdr:-fsm xcosx dx

= %sinjx— %5in?x+{f'

Example 13: Evaluate | sec ® x dx
fsm‘.ﬁ xdx= fscc4xs:c2xn‘fr
=f(scclszacclxeir
=f(tan2x+ 1) sec’ xdx
‘:f{l:an"x+ 2tan’ x+ 1)sec’ xdx
:ftan‘xscczxdx+ fZIanzxm:zxdt+fsec2xdr

= % tan’ x+ %:an3x+ tanx + C



Example 14: Evaluate | sin * x dx
[sin'xde= [ (sin® 0" de
- [(=9E) &
=%f{1 — 2 cos2x + cos’ 2x) dx
L[ (1 2coszer Lt 4
=%f(%—2mslx+%)dx

= %f{3~4c052x+ coséx ) dx

1]
ool o8

l(3x~ 2sin2x + %sin-ix) +C

%= Lsin2v+ g5 sinde+ C

: . . : 2
If an integrand contains a radical expression of the form u/ﬂ -x', v/ﬂ’l"' x7, Df»f-fl -a’,a
specific trigonometric substitution may be helpful in evaluating the indefinite integral. Some
general rules to follow are

1. If the integrand containsy a’—x'

letx=asinB
dx = a cos 040
and /a’ - x* = acos®

2. If the integrand containsv a’+x

letx=atan @
dx = a sec’ 0d©

and a’+x’ = asech
3. If the integrand contains v x'-a’

let x=asecO

dx = a sec O tanB4 6
and /x’— 4’ = atan®



Right triangles may be used in each of the three preceding cases to determine the expression for
any of the six trigonometric functions that appear in the evaluation of the indefinite integral.

f dx
Example 15: Evaluate ¥ *°y 4= x"

Because the radical has the form

letx=asin@ = 2sinf

dx=2cos0d 0

,,f'dz—xzan{i.,a"fi—x2=2cnsﬁ'

Figure 1 Diagram for Example 15.

" J (4sin” 0)(2 cosB)
_1[_d6

4 ) sin’@
=4 [ 0do

dx 2 cosB40
hence, fxzjlf—x: ) 0)

=“%Cﬂt3+ C

J4-x* c

_+_

1
=- -0

f dx
Example 16: Evaluate ; 25 + x°

Because the radical has the form v 2" +x°

let x=atan® = 5wanb
de=5sec’ 040

and,,a 25 +x'= 5 sec@



Figure 2 Diagram for Example 16.

dx [ 5sec’ 040
hence, f ‘,’5 el SsecO®

= f secOd0

=In|secO + tanB|+ C

J25+x°

5 +

=In +C

W=




